Topological Uniqueness of the Nash Equilibrium for Selfish Routing with Atomic Users

نویسندگان

  • Oran Richman
  • Nahum Shimkin
چکیده

We consider the problem of selfish routing in a congested network shared by several users, where each user wishes to minimize the cost of its own flow. Users are atomic, in the sense that each has a nonnegligible amount of flow demand, and flows may be split over different routes. The total cost for each user is the sum of its link costs, which, in turn, may depend on the user’s own flow as well as the total flow on that link. Our main interest here is network topologies that ensure uniqueness of the Nash equilibrium for any set of users and link cost functions that satisfy some mild convexity conditions. We characterize the class of two-terminal network topologies for which this uniqueness property holds, and show that it coincides with the class of nearly parallel networks that was recently shown by Milchtaich [Milchtaich, I. 2005. Topological conditions for uniqueness of equilibrium in networks. Math. Oper. Res. 30 225–244] to ensure uniqueness in nonatomic (or Wardrop) routing games. We further show that uniqueness of the link flows holds under somewhat weaker convexity conditions, which apply to the mixed Nash-Wardrop equilibrium problem. We finally propose a generalized continuum-game formulation of the routing problem that allows for a unified treatment of atomic and nonatomic users.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological Uniqueness of the Nash Equilibrium for Atomic Selfish Routing

We consider the problem of selfish routing in a congested network shared by several users, where each user wishes to minimize the cost of its own flow. Users are atomic, in the sense that each has a non-negligible amount of flow demand, and flows may be are split over different routes. The total cost for each user is the sum of its link costs, which in turn may depend on the user’s own flow as ...

متن کامل

A Survey of Uniqueness Results for Selfish Routing

We consider the problem of selfish or competitive routing over a network with flow-dependent costs which is shared by a finite number of users, each wishing to minimize the total cost of its own flow. The Nash Equilibrium is well known to exist for this problem under mild convexity assumptions on the cost function of each user. However, uniqueness requires further conditions, either on the user...

متن کامل

Pii: S0166-5316(02)00112-8

The paper studies routing in loss networks in the framework of a non-cooperative game with selfish users. Two solution concepts are considered: the Nash equilibrium, corresponding to the case of a finite number of agents (such as service providers) that take routing decisions, and the Wardrop equilibrium, in which routing decisions are taken by a very large number of individual users. We show t...

متن کامل

The price of atomic selfish ring routing

We study selfish routing in ring networks with respect to minimizing the maximum latency. Our main result is an establishement of constant bounds on the price of stability (PoS) for routing unsplittable flows with linear latency. We show that the PoS is at most 6.83, which reduces to 4.57 when the linear latency functions are homogeneous. We also show the existence of a (54,1)-approximate Nash ...

متن کامل

Atomic Resource Sharing in Noncooperative Networks

In noncooperative networks, resources are shared among selfish users, which optimize their individual performance measure. We consider the generic and practically important case of atomic resource sharing, in which traffic bifurcation is not implemented, hence each user allocates its whole traffic to one of the network resources. We analyze topologies of parallel resources within a game-theoret...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Oper. Res.

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2007